
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 25
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Estimation of Maintainability in Object
Oriented Design Phase: State of the art

Vivek Rai, Akhilesh Mohan Srivastava, Himanshu Pandey, Dr. V. K Singh

ABSTRACT: Object oriented designing is an essential part of software environment. This study focuses on a set
of object oriented metrics that can be used to measure the maintainability of an object oriented design. These
metrics for object oriented design focus on measurements that are applied to the class and design characteristics.
These measurements permit designers to access their software early in process, making changes that will reduce
maintainability and improve the continuing capability of the design. In our paper we studied those metrics using
empirical analyses for three package designs for the same software. We also found out that value of RFC doesn’t
need to be low for developing a less fault prone software.

KEYWORDS: maintainability, object-oriented, metrics, designing, classes.

—————————— ——————————

1. INTRODUCTION

A software product requires a number of
measures to be taken into account for its
designing. The most important measure that
must be considered in any software product is its
design quality [1]. Among all the quality criteria,
software maintainability is broadly accepted as a
highly significant quality criterion in the
economic success of engineering systems and
products. There is a need for software engineers
to understand how various components of a
design interact in order to maintain and enhance
the reliability of software during maintenance.
Maintenance of software is one of the most
expensive and resource requiring phase of the
software development process, maintainability
evaluation is an essential component of modern
software development life cycle. Evaluation of
software maintainability, if done accurately, can
be useful in aiding decision making related to the
software, efficiency of the maintenance process,
comparing productivity and costs among
different projects, allocation of resource and staff,
and so on. This minimizes the future
maintenance effort [4]. .
The study has been conducted in object-oriented
paradigm. This is due to the fact that the primary
purpose of object-oriented design is to improve
software quality criteria such as maintainability,
reliability, usability, etc by managing software
complexity. The logical complexity of the source
code has a strong correlation to the
maintainability of the resultant software [8], [9].
Reducing the software development and
maintenance costs is the main objective of object-
oriented design. In order to facilitate the analysis

and evaluation of maintainability of an object-
oriented system, Chidamber and Kemerer (CK)
metrics [10] have been used. CK metrics are
design complexity metrics that aid in identifying
certain design and code characteristics in object-
oriented software which in turn helps in
assessing external software qualities such as
software defects, testing, and maintenance effort
[11].

According to IEEE Standard Glossary of
Software Engineering Terminology
Maintainability can be defined as the ease with
which a software system or component can be
modified to correct faults, improve performance
or other attributes, or adapt to a changed
environment [11]. The object oriented metrics are
used to evaluate and predict the quality of
software. These metrics are used as an early
indicator of externally visible attributes. The
externally visible attributes could not be
measures until too late in the software
development process. Metrics to be a set of
standards against which one can measure the
effectiveness of object oriented analysis
techniques in the design of a system. There is a
Mood matrix that stands for maintainability of
object oriented design. The object oriented
development methods models the system
components as the objects and this matrix is used
by the object oriented developers to reduce the
maintenance effort.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 26
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Some of the other popular software quality
metrics for measuring the maintainability of the
system are:
Testability: Testability is the quality of the
software design. Testability is extrinsic property
that helps to find out the various kind of bugs
presented in the system. It also helps in reducing
the bugs for effectiveness of the system. A
testable product is used for the complete
execution of the test scripts.
Understandability: Understandability of the
software system defines as the attributes of the
software that uses the user efforts to recognize
the various logical concepts.

Modifiability: Modifiability is defined as the
changes that occur in the system to increases the
performance of the system. Whenever there is
the need to change the properties of the system,
the developers changes its features according to
the demand of the developer.

There are other approaches too to that aim to
provide high quality and low maintenance cost.
Component based software engineering is the
branch of software engineering that emphasizes
the separation of concerns. Component based
software engineering assembles the software
products from pre existing smaller products.
These products are known as the components. A
component model generally defines a concept of
components and rules for their design time
composition and is usually accompanied by one
or more component technologies, implementing
support for composition and interoperation. This
approach is primarily used to revolutionize the
development and maintenance of software
systems.

Factors affecting maintainability:
For evaluating the maintainability of object
oriented system five factors are taken
complexity, class, coupling, inheritance and
number of children. These factors are chosen
since they are the design complexity factors and
show more impact on the maintainability of
object-oriented software system. Brief outlines of
all these factors are:
Complexity: By software complexity we mean
the difficulty to preserve, modify and
comprehend the software.

Class: A class is a basic unit of OOP and it can be
said as a set of objects that includes same
methods, attributes and relationships.
Coupling: Coupling means the interdependency
between different components or functions.
Coupling is the measure of interconnections
among the modules in a software structure.
Inheritance: Inheritance is defined as classes
having same methods and operations based on
hierarchy. It is a mechanism whereby one object
acquires the characteristics from one or more
other objects.
Number of Children: Number of Children
defines the number of subclasses subordinate to
a class in the hierarchy. It indicates the potential
influence of a class on design and system.

1.1 LITERATURE SURVEY

MuktamyeeSarker [2] presented a set of object
oriented metrics that can be used to measure the
quality of an object oriented design. These
metrics allows designers to access the software
early in development process, making changes
that will reduce complexity and improve the
capability of the design.Seyyed Mohsen Jamali
[3] also stressed on the importance of such
metrics specially when an organization is
adopting a new technology for which established
practices have yet to be developed. Such needs
can be addressed by the development and
implementation of a suite of metrics for OO
design.
Study by Ramanath Subramanyam and M.S.
Krishnan [5] enhanced prior empirical literature
on OO metrics by giving a new set of results that
could validate the association between a subset
of CK metrics [10] and defects detected during
acceptance testing and those reported by the
users. They also pointed out that after controlling
for size; some of the metrics in the CK suite of
OO design complexity metrics could
significantly explain deviations in defects.

A suite of metrics for OO design, called MOOD,
can be used to measure the use of OO design
mechanisms. Various mechanisms like
inheritance, polymorphism, information hiding
and coupling, can influence quality
characteristics like reliability or maintainability
[26].Chidamber & Kemerer’s OO metrics are

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 27
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

considered as the best predictors than the best set
of “traditional” code metrics [25]. Most authors
have used CMK as the basis of their research.
Amjan Shaik and C.R.K. Reddy [15] presented a
paper that assessed the current state of the art in
metrics and object oriented software system
quality along with a short descriptive taxonomy
of the Object-Oriented Design and Metrics.
M Esperanza Manso, Marcela Genero and Mario
Piattinis [19] studied 8 metrics for measuring the
structural complexity of class diagrams due to
the usage of UML relationships, and 3 metrics to
measure their size so that to identify metrics that
are really represent as maintainability indicators
in a class diagram. They present their work by a
study based on Principal Component Analysis. It
finally concluded that the metrics related to
associations, aggregations, generalizations and
dependencies, are the most relevant while those
related to size seemed to be redundant.

Melis Dagpinar and Jens H. Jahnke [6] also in
their work discussed the impact of various OO
metrics on software maintainability. By using an
empirical approach they concluded that size and
import direct coupling metrics are significant
predictors for measuring maintainability of
Classes while inheritance, cohesion, and
indirect/export coupling measures are not.
Another study also indicated the significance of
maintainability at design phase and build up a
multivariate linear Maintainability Estimation
Model for Object-oriented Design [7] which
could estimate the maintainability of class
diagrams in respect of their Extendibility and
Reusability. Rajendra Kumar and Dr.Namrata
Dhanda in their work [12] gave a multivariate
regression model called as Maintainability
Estimation Model for Object-Oriented design
which could be used at Design phase in software
development process. Developed model can
measure maintainability of object oriented design
in respect of Extendibility and Flexibility.
Devpriya Soni, Namita Shrivastava and M.
Kumar used the Logical Scoring of Preferences
method toevaluate global quality of designs to
provide reasonable estimates for factors like
functionality, effectiveness,
eusability,understandability, and maintainability
and also the overall quality of software design
[13].

Kiranjit Kaur and Sami Anand proposed a
multivariate linear model [14] which could
measure the maintainability of a class diagram in
the term of reliability, portability that are the
sub-characteristics of maintainability. Similar
work is done by Geeta Laxmi, Kavita Agrawal
and Rizwan begin their paper that stressed on
thesignificance of maintainability at design phase
[16]. Moreover they build a multivariate linear
model called as Maintainability Measurement
Model for Object-Oriented Design which could
estimate the maintainability of class diagrams in
respect of their analyzability, understandability
and modifiability.There was another research
that also developed a multivariate process model
to provide efficient and effective support for
object oriented software [23]. This research
stressed on the maintainability approach to
automatic maintenance of object oriented
software which is carried out at the time of
software design.

Anil Kumar Malviya and Vibhooti Singh
proposed an automation tool that can help the
developers to reduce maintenance cost of
software project [17].

Luis Reynoso, Marcela Genero and Mario Piattini
[18] gave their yet another contribution, they
defined a set of metrics for measuring the
structural properties of OCL constraints in
UML/OCLmodels. Many of these metrics and
measurements are defined inters of navigations,
a core concept of OCL that defines coupling
between the objects. They also stated that
relationship exists between object coupling
(defined through metrics related to navigations
and collection operations) and two
maintainability sub-characteristics:
understandability and modifiability of OCL
expressions [20].

There is one more multivariate linear model
called as ‘Maintainability Estimation Model for
Object-Oriented software in Design phase’ or
(MEMOOD) [21], which could calculate the
maintainability of class diagrams in terms of
their understandability and modifiability.
D.N.V.Syma Kumar, R.Satya Prasad and
R.R.L.Kantam [22] proposed a non-linear
maintainability model to find the significant
factors for maintainability in the systems which

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 28
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

shows the non-linear behavior in the nature.
They used t-test for the reduction of the
regression overhead in the process of finding the
estimation model of the maintainability with
reference to two factors: understandability and
modifiability. El-Emam, Khaled and Melo, W in
their work [24] developed a set of object-oriented
design metrics which can be used to construct
such prediction models with high accuracy. They
also concluded that an export coupling metric
had the strongest association with
faultproneness, indicating a structural feature
that may be symptomatic of a class with a high
probability of later faults.

2. MAINTAINABILITY

Maintainability has previously been described
mainly in two ways, either informally or as a
function of directly measurable attributes.
Informal Descriptions There are many text
descriptions available, which are in essence very
similar. We quote the IEEE Standard Glossary of
Software Engineering Terminology:
Maintainability: The ease with which a software
system or component can be modified to correct
faults, improve performance or other attributes,
or adapt to a changed environment. [11]
There are other examples of such descriptions
[3,4,36].
Such descriptions capture what is intuitively
meant with maintainability, but have some
problems. They do not in any way guide in how
to estimate or measure maintainability. Another
problem is that if we follow this approach and
try to measure maintainability as “effort”, we
should bear in mind that the common unit for
effort, “manmonth”, is in itself very dubious [8].
We can also note that Pfleeger describes
maintainability as “the probability that […] a
maintenance activity can be carried out within a
stated time interval […] [it] ranges from 0 to 1”
([8], italics added).

Definitions for Maintainability from
Selected Studies

The ease with which a software application or
component can be modified to correct faults,
improve performance or other attributes, or
adapt to a changed environment

• Software maintenance difficulty is the
relative degree to which software
maintenance is hard to understand, perform,
and manage.

• The article takes error rate as independent
variable and suggests measures that can be
used to highlight features in software design
that may require future corrective or
preventative maintenance activity.

• Understandability: The ease with which a
class diagrams can be understood.

• Analyzability: The capability of a class
diagram to be diagnosed for deficiencies or
to identify parts to be modified.

• Modifiability: The capability of a class
diagram to enable a specified modification to
be implemented.

• The ease with which a software system can
be modified to correct a fault or conform to
changed requirements.

• How difficult it is to make small or
incremental changes to an existing software
object without introducing errors in logic or
design.

• The number of changes made to the code
during a maintenance period.

• The probability that the detected fault can be
corrected and removed by an arbitrary time
t.

 A. Object Oriented Metrics

The term metrics is frequently used to mean a set
of specific measurements taken on a particular
process. The object oriented metrics are used to
evaluate and predict the quality of software.
These metrics are used as an early indicator of
externally visible attributes. The externally
visible attributes could not be measures until too
late in the software development process.
Metrics to be a set of standards against which
one can measure the effectiveness of object
oriented analysis techniques in the design of a
system. Object oriented metrics can be applied to
analyze source code as an indicator of quality
attributes. The source code could be any object
oriented language. On the basis of their
requirements, object oriented metrics can be
classified into two categories. :

1) Project based metrics

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 29
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2) Design based metrics

A.1. MOOD Matric

Mood matrix stands for maintainability of object
oriented design. In the development of the
software systems the object oriented developers
are promises to reduce the maintenance effort.
The object oriented development methods
models the system components as the objects.
These objects are helpful in allow the designer to
separate the interface from the implementation.
Earlier the maintainability can be defines in three
different ways as,

A.1.1 Testability

Testability is the quality of the software design. It
helps in the automated testing. Testability is
extrinsic property that helps to find out the
various kind of bugs presented in the system. It
also helps in reduces the bugs for effectiveness of
the system. A testable product is used for the
complete execution of the test scripts. When the
testability is take place in the system, the
customers reports the minimum number of
defects. The testable products are easy and the
cost to maintain product also less. Testability is
an important aspect for the maintainability of
software product.

3. OBJECT-ORIENTED DESIGN
An object contains encapsulated data and
procedures grouped together to represent
an entity. The 'object interface' defines how
the object can be interacted with. An object-
oriented program is described by the interaction
of these objects. Object-oriented design is the
discipline of defining the objects and their
interactions to solve a problem that was
identified and documented during object-
oriented analysis.

What follows is a description of the class-
based subset of object-oriented design, which
does not include object prototype-
based approaches where objects are not typically
obtained by instancing classes but by cloning
other (prototype) objects. Object-oriented design
is a method of design encompassing the process
of object-oriented decomposition and a notation

for depicting logical and physical as well as state
and dynamic models of the system under design.

Input (sources) for object-oriented design
The input for object-oriented design is provided
by the output of object-oriented analysis. Realize
that an output artifact does not need to be
completely developed to serve as input of object-
oriented design; analysis and design may occur
in parallel, and in practice the results of one
activity can feed the other in a short feedback
cycle through an iterative process. Both analysis
and design can be performed incrementally, and
the artifacts can be continuously grown instead
of completely developed in one shot.

Some typical input artifacts for object-oriented
design are:

• Conceptual model: The result of object-
oriented analysis, it captures concepts in
the problem domain. The conceptual model
is explicitly chosen to be independent of
implementation details, such
as concurrency or data storage.

• Use case: A description of sequences of
events that, taken together, lead to a system
doing something useful. Each use case
provides one or more scenarios that convey
how the system should interact with the
users called actors to achieve a specific
business goal or function. Use case actors
may be end users or other systems. In many
circumstances use cases are further
elaborated into use case diagrams. Use case
diagrams are used to identify the actor
(users or other systems) and the processes
they perform.

• System sequence diagram: A system
sequence diagram (SSD) is a picture that
shows, for a particular scenario of a use case,
the events that external actors generate their
order, and possible inter-system events.

• User interface documentations (if
applicable): Document that shows and
describes the look and feel of the end
product's user interface. It is not mandatory
to have this, but it helps to visualize the end-
product and therefore helps the designer.

• Relational data model (if applicable): A data
model is an abstract model that describes

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Entity
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_analysis
https://en.wikipedia.org/wiki/Object-oriented_analysis
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Object-oriented_analysis
https://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
https://en.wikipedia.org/wiki/Problem_domain
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Scenario_(computing)
https://en.wikipedia.org/wiki/System_sequence_diagram
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Look_and_feel
https://en.wikipedia.org/wiki/Relational_data_model

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 30
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

how data is represented and used. If
an object database is not used, the relational
data model should usually be created before
the design, since the strategy chosen
for object-relational mapping is an output of
the OO design process. However, it is
possible to develop the relational data
model and the object-oriented design
artifacts in parallel and the growth of an
artifact can stimulate the refinement of other
artifacts.

Object-oriented concepts

The five basic concepts of object-oriented design
are the implementation level features that are
built into the programming language. These
features are often referred to by these common
names:

• Object/Class: A tight coupling or
association of data structures with the
methods or functions that act on the data.
This is called a class, or object (an object is
created based on a class). Each object serves
a separate function. It is defined by its
properties, what it is and what it can do. An
object can be part of a class, which is a set of
objects that are similar.

• Information hiding: The ability to protect
some components of the object from external
entities. This is realized by language
keywords to enable a variable to be declared
as private or protected to the owning class.

• Inheritance: The ability for a class to extend
or override functionality of another class.
The so-called subclass has a whole section
that is derived (inherited) from the super
class and then it has its own set of functions
and data.

• Interface (object-oriented programming):
The ability to defer the implementation of
a method. The ability to define the
functions or methods signatures without
implementing them.

• Polymorphism (specifically, Subtyping):
The ability to replace an object with its sub
objects. The ability of an object-variable to
contain, not only that object, but also all of
its sub objects.

Designing concepts

• Defining objects, creating class
diagram from conceptual diagram: Usually
map entity to class.

• Identifying attributes.

• Use design patterns (if applicable): A design
pattern is not a finished design, it is a
description of a solution to a common
problem, in a context.[1] The main advantage
of using a design pattern is that it can be
reused in multiple applications. It can also
be thought of as a template for how to solve
a problem that can be used in many
different situations and/or applications.
Object-oriented design patterns typically
show relationships and interactions between
classes or objects, without specifying the
final application classes or objects that are
involved.

• Define application framework (if
applicable): Application framework is a term
usually used to refer to a set of libraries or
classes that are used to implement the
standard structure of an application for a
specific operating system. By bundling a
large amount of reusable code into a
framework, much time is saved for the
developer, since he/she is saved the task of
rewriting large amounts of standard code
for each new application that is developed.

• Identify persistent objects/data (if
applicable): Identify objects that have to last
longer than a single runtime of the
application. If a relational database is used,
design the object relation mapping.

• Identify and define remote objects (if
applicable).

Output (deliverables) of object-oriented
design

• Sequence diagram: Extend the system
sequence diagram to add specific objects
that handle the system events.
A sequence diagram shows, as parallel
vertical lines, different processes or objects
that live simultaneously, and, as horizontal

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Inheritance_(computer_science)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Subtyping
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_design#cite_note-gof-1
https://en.wikipedia.org/wiki/Application_framework
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/System_sequence_diagram
https://en.wikipedia.org/wiki/System_sequence_diagram

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 31
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

arrows, the messages exchanged between
them, in the order in which they occur.

• Class diagram: A class diagram is a type of
static structure UML diagram that describes
the structure of a system by showing the
system's classes, their attributes, and the
relationships between the classes. The
messages and classes identified through the
development of the sequence diagrams can
serve as input to the automatic generation of
the global class diagram of the system.

Some design principles and strategies
Dependency injection: The basic idea is that if
an object depends upon having an instance of
some other object then the needed object is
"injected" into the dependent object; for example,
being passed a database connection as an
argument to the constructor instead of creating
one internally.

• Acyclic dependencies principle: The
dependency graph of packages or
components (the granularity depends on the
scope of work for one developer) should
have no cycles. This is also referred to as
having a directed acyclic graph. For
example, package C depends on package B,
which depends on package A. If package A
also depended on package C, then you
would have a cycle.

• Composite reuse principle: Favour
polymorphic composition of objects over
inheritance.

4. ESTIMATION PROCESS

Estimation theory is a branch of statistics and sig
nalprocessing that deals with estimating thevalu
es of parameters based on measured/empirical d
ata that has a random component. Theparameter
s describe an underlying physical setting in such
a way that their value affects thedistribution of th
e measured data. An estimator attempts to appro
ximate the unknown parametersusing the measu
rements.

For example, it is desired to estimate the proporti
on of a population of voters who willvote for apa
rticular candidate. That proportion is the parame
ter sought; the estimate is based on a smallrando

m sample of voters.Or, for example, in radar the
goal is to estimate the range of objects (airplanes,
boats etc.) byanalyzing the two-
way transit timing of received echoes of transmit
ted pulses. Since the reflectedpulses are unavoid
ably embedded in electrical noise, their measure
d values are randomly distributed,
so that the transit time must be estimated.

In estimation theory, two approaches are general
ly considered.

• The probabilistic approach (described in this
article) assumes that the measured data is ra
ndom with probability
distribution dependent on the parameters of
 interest

• The setmembership approach assumes that t
he measured data vector belongs to a set whi
ch depends on the parameter vector.

For example, in electrical communication theory,
the measurements which contain informationreg
arding the parameters of interest are often associ
ated with a noisy signal. Without randomness,
or noise, the problem would be deterministic and
 estimation would not be needed.

Metrics Used For Evaluating Maintainability
These metrics are aimed at assessing the design
of object-oriented system rather than
implementation. This makes them more suited to
object-oriented paradigm as object-oriented
design puts great emphasis on the design phase
of software system. The CK metric suite consists
of six design complexity metrics- WMC, DIT,
NOC, CBO, RFC and LCOM. Except for LCOM,
all these metrics can be used as maintainability
predictors as LCOM is uncorrelated with the
maintainability of the software. Thus the CK
metrics (except LCOM) are briefly described as
follows [10]:

WMC (Weighted Methods per Class)
It is a weighted sum of all the methods defined
in a class. It measures the complexity of a class. It
also predicts how much time and effort is
required to develop and maintain the class. High
WMC indicates greater complexity and hence
low maintainability.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Acyclic_dependencies_principle
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Composite_reuse_principle
http://encyclopedia.thefreedictionary.com/Statistics
http://encyclopedia.thefreedictionary.com/Estimator
http://encyclopedia.thefreedictionary.com/Radar
http://encyclopedia.thefreedictionary.com/Probability+distribution
http://encyclopedia.thefreedictionary.com/Probability+distribution
http://encyclopedia.thefreedictionary.com/Signal+(electrical+engineering)
http://encyclopedia.thefreedictionary.com/Determinism

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 32
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

DIT (Depth of Inheritance Tree)
It is the length of the longest path from a given
class to the root class in the inheritance hierarchy
and is measured by the number of ancestor
classes. So this metric calculates how far down a
class is declared in the inheritance hierarchy.
High DIT indicates greater design complexity
and more fault-proneness.

NOC (Number of Children)
It is equal to the number of immediate child
classes derived from a base class. High NOC
means greater level of reuse, more effort
required for testing, more complexity and fault-
proneness.

CBO (Coupling Between Objects)
For a class, CBO is measured by counting the
number of other classes to which it is coupled.
Coupling is a measure of interdependence of two
objects. Two classes are coupled if methods of
one use methods and/or instance variables of the
other. High CBO indicates complex design,
decreases modularity, and complicates testing of
the class.

RFC (Response for a Class)
It is the count of all the methods which can
potentially be executed (directly or indirectly) in
response to a message to an object of that class or
by some method in the class. (This includes all
methods accessible within class hierarchy). High
RFC means more effort required for testing,
greater design complexity and fault-proneness.
The values of all the above metrics are inversely
proportional to the maintainability of a system
[9].

5. PROPOSED WORK

In our paper we will use the CK metrics [10] to
study the effect of various factors related to class
and find out which of them have more relevance
in measuring the maintainability of software as
early as in its design process. We used sample
data of three packages each for a model design of
an online shopping website. All the three models
were used to construct a software, based on the
analysis of those designs and the difficulties
faced by the developers in later stages of
maintainability we will conclude the impact of
the metrics on maintainability. Analysis is done

by a empirical evaluation of the class diagram of
each package with respect to stated metrics.

We are going to use WMC (Weighted Methods
per Class), DIT (Depth of Inheritance Tree), NOC
(Number of Children), CBO (Coupling between
Objects) and RFC (Response for a Class) metrics
for evaluation of the package designs. The details
of the various packages are given in the
following tables:

CLASSE
S

WM
C

DIT NO
C

CBO RFC

1 0 0 0 2 0
2 0 0 0 0 0
3 0 0 3 2 0
4 0 1 2 4 0
5 0 0.633 0 2 0
6 0 2 0 3 0
7 0 2.33 0 3 0
8 0 2 0 3 0
9 0 2.65 0 1 0
10 0 0 0 0 0

Table 1: detailed information of package 1

CLASSES WMC DIT NOC CBO RFC
1 4 1 0 1 7
2 3 0 4 3 10
3 1 1 2 3 6
4 1 0 0 2 5
5 1 2 0 1 5
6 1 0 0 1 1
7 1 2 0 1 5

Table 2: detailed information of package 2

CLASSES WMC DIT NOC CBO RFC
1 0 0 0 2 1
2 0 0 0 0 0
3 0 1 0 2 0
4 1 0 0 2 1
5 0 0 0 0 0
6 0 0 2 4 1
7 0 0.33 0 2 0
8 0 0.33 0 1 0
9 0 0 0 2 0
10 0 1 0 1 0

Table 3: detailed information of package 3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 33
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

As we can see through the tables package 1 is
pretty simple package that have no defined
functions and therefore has zero response for
functions in its entire structural framework.
Package 2 is more defined with functions and
inheritance between classes. It has also got high
values for RFC for only 7 classes. High values of
RFC are generally considered to attain more
complexity for the system development [10].
Now, package 3 with 10 classes also has only one
method in its structure. This package consists of
a total of 2 RFC but well defined variables.
Now to conduct an empirical study on the
various metrics for the three packages we will
calculate their mean and median values for each
of the metrics. First, Weighted method per class
(WMC):

PACKAGES MEAN MEDIAN
Package1 0 0
Package 2 1.714 1
Package 3 0.01 0
Table 4: mean and median values for WMC

PACKAGES MEAN MEDIAN
Package1 1.061 0.816
Package 2 0.857 1
Package 3 0.266 0

Table 4: mean and median values for DIT

PACKAGES MEAN MEDIAN
Package1 0.05 0
Package 2 0.857 0
Package 3 0.02 0

Table 4: mean and median values for NOC

PACKAGES MEAN MEDIAN
Package1 2 2
Package 2 1.714 1
Package 3 1.60 2

Table 4: mean and median values for CBO

PACKAGES MEAN MEDIAN
Package1 0 0
Package 2 5.571 5

Package 3 0.03 0
Table 4: mean and median values for RFC

These designs were further used to create an
online shopping website. .Now, we will analyze
the sample data empirically using a graphical
representation.

Figure 1: graphical representation of mean values
for the metrics of the three packages

We chose bar chart graphical representation to
analyze our results because it is more clear and
easier to understand, even for novice students.
Package 2 was the most useful design for
constructing the software and required little
maintenance as compared to the other software
developed using package 1 and 3 designs. We
analyzed that even though high value of RFC is
considered to bring complexity in the design [10]
but having zero or almost no value isn’t helpful
either. CBO should be kept as minimum as
possible so as to maintain the reusability of the
class. Our prime focus was to analyze the impact
of RFC on the overall quality of the software
design and prove that even though it increases
the overall complexity of the design and efforts
required by the testers in testing each and every
path possible it yet results in better less fault
prone software.

0

1

2

3

4

5

6

WMC DIT NOC CBO RFC

PACKAGE 1

PACKAGE 2

PACKAGE 3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 34
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 1: graphical representation of median
values for the metrics of the three packages

Median denotes the middle value of the sample
data, in the figure 2 we have shown the graphical
representation of the median values for all of the
metrics of three packages. In the figure as we can
see that RFC for package 3 is quite high and
NOC is situated at 0.

6. CONCLUSION AND FUTURE WORK

Maintainability is considered as an important
quality factor for developing the efficient
software system.Object-oriented approach
enhances the maintainability of software system.
In literature there are no well-defined criteria to
evaluate maintainability.Measuring
maintainability of a software system in the
design phase may help a software designer
improve the maintainability of software system
before delivery to the customer and hence
reduces a lot of efforts, time and cost.
In this paper we aimed to present the state of art
of object oriented designs and analyze its various
metrics that effect maintainability. We found out
that despite of its traditional view on RFC to
cause increase in complexity and efforts during
testability it lead to development of a less fault
prone software. So instead of trying to keep its
value as low as possible the designers must try to
keep the class diagram fully elaborate with

detailed description of each method so as to have
better understanding for the codes developers.
In future we aim to study the MOOD metrics
and finally present our own multivariate model
that can estimate maintainability of the software
design.

7. REFERENCES

[1] Ragab, S. R., Ammar, H. H., 2010 “Object-
Oriented design metrics and tools: a survey”,
Proc. Of Informatics and Systems (INFOS), pp. 1
– 7

[2] MuktamyeeSarker, 2005 “An overview of Object
Oriented Design Metrics”, Master Thesis, Umeå
University, Sweden.

[3] Seyyed Mohsen Jamali, January 2006 “Object

Oriented Metrics(A Survey Approach)”, Tehran
Iran.

[4] Lucia, A. De, Pompella, E., Stefanucci, S., 2005

"Assessing effort estimation models for
corrective maintenance through empirical
studies," Information and Software Technology,
vol. 47, no. 1, pp. 3-15.

[5] RamanathSubramanyam and M.S. Krishnan,
May 2003 “Empirical analysis of CK metrics for
object torienteddesign complexity: implications
forsoftware defects”. ARTICLE in IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING.

[6] MelisDagpinar and Jens H. Jahnke, 2003,

“Predicting Maintainability with Object-
OrientedMetrics - An Empirical
Comparison”.Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE’03)
IEEE.

[7] NupurSoni, Dr. MazharKhaliq, 2015,

“Maintainability Estimation of Object Oriented
Software: Design Phase Perspective”.
International Journal of Advanced Research in
Computer and Communication EngineeringVol.
4, Issue 3, March 2015.

[8] Pfleeger S. L., Software Engineering, Theory and

Practice, Prentice-Hall, Inc., 1998.

[9] Dubey, S. K., Rana, A., 2011 “Assessment of
Maintainability Metrics for Object-Oriented
Software System”, ACM SIGSOFT SEN, vol. 36,
No. 5.

[10] Chidamber, S. R., Kemerer, C. F., 1994 "A

Metrics Suite for Object Oriented Design," IEEE

0

1

2

3

4

5

6

PACKAGE 1

PACKAGE 2

PACKAGE 3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 35
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Transactions on Software Engineering, vol. 20,
no. 6, pp. 476-493.

[11] IEEE, IEEE Standard Glossary of

SoftwareEngineering Terminology, report IEEE
Std 610.12-1990, IEEE, 1990.

[12] Rajendra Kumar, Dr.NamrataDhanda, 2015,

“Maintainability Measurement Model for
Object-Oriented Design”. International Journal
of Advanced Research in Computer and
Communication Engineering, Vol. 4, Issue 5,
May 2015.

[13] DevpriyaSoni, Dr. NamitaShrivastava and Dr.

M. Kumar, 2010, “A Methodology for Empirical
Quality Assessment ofObject-Oriented Design”.
(IJCSIS) International Journal of Computer
Science and Information Security, Vol. 7, No.2,
2010.

[14] KiranjitKaur. ,SamiAnand, 2013, “A

Maintainability Estimation Model and Metrics
for Object-Oriented Design (MOOD)”.
International Journal of Advanced Research in
Computer Engineering & Technology
(IJARCET) Volume 2, No 5, May 2013,ISSN:
2278 – 1323 .

[15] AmjanShaik, Dr. A. Damodaram, Dr. C. R. K.

Reddy , 2012, “Object Oriented Software Metrics
and Quality Assessment: Current State of the
Art “.International Journal of Computer
Applications (0975 – 8887) Volume 37– No.11,
January 2012.

[16] GeetaLaxmi,Mrs. KavitaAgrawal , Dr. Rizwan

Beg, 2014 ,” Maintainability Measurement
Model of Object Oriented Design “.International
Journal of Advanced Research in Computer
Science and Software Engineering ,Volume 4,
Issue 11, November 2014 ISSN: 2277 .

[17] Anil Kumar Malviya, Vibhooti Singh , 2015

“Some Observations on Maintainability
Estimation Model for Object Oriented Software
in requirement, Design, Coding and Testing
Phases”. International Journal of Advanced
Research in Computer Science and Software
Engineering, Volume 5, Issue 3, March 2015
ISSN: 2277 .

[18] M EsperanzaManso, Marcela Genero, Mario

Piattini, “No-Redundant Metrics for UML Class
DiagramStructural Complexity”.

[19] Luis Reynoso, Marcela Genero,Mario
Piattini,2005, “Assessing the Impact of Coupling
on the Understandability and Modifiabilityof
OCL Expressions within UML/OCL Combined
Models”. IEEE- 2005, Spain.

[20] S. W. A. Rizvi and R. A. Khan ,2010,
“Maintainability Estimation Model for Object-
Oriented Software in Design Phase(MEMOOD)
“.JOURNAL OF COMPUTING, VOLUME 2,
ISSUE 4, APRIL 2010, ISSN 2151-9617.

[21] Mr.D.N.V.Syma Kumar,Dr.R.Satya

Prasad,Dr.R.R.L.Kantam, 2015 ,“Maintainability
of Object-Oriented SoftwareMetrics Using Non-
Linear Model”. International Journal of
Advanced Research inComputer Science
Engineering and Information Technology,
Volume: 5 Issue: 3 20-Mar-2015,ISSN_NO: 2321-
3337.

[22] Anshul Mishra and Ajay Kumar Yadav, 2014,

“Proposed Maintainability Model for Software
Development: Design Issues”.American
International Journal of Research in Science,
Technology, Engineering & Mathematics,
AIJRSTEM 14-377, 2014.

[23] El-Emam, Khaled; Melo, W., 1999, “The
Prediction of Faulty Classes Using Object-
Oriented DesignMetrics “. NRC Publications
Archive (NPArC) ,Publisher’s version: J. Syst.
Software, 1999.

[24] Victor R. Basili, Lionel Briand and Walcélio L.

Melo, 1995, “A VALIDATION OF OBJECT-
ORIENTED DESIGNMETRICS AS QUALITY
INDICATORS”. Technical Report, Univ. of
Maryland, USA. April 1995.

[25] Fernando Brito e Abreu, WalcélioMelo, 1996,

“Evaluating the Impact of Object-Oriented
Design on Software Quality”.IEEE, Berlin,
Germany, March 1996.Originally published in
Proceedings of the 3rd InternationalSoftware
Metrics Symposium (METRICS’96).

IJSER

http://www.ijser.org/

	Input (sources) for object-oriented design
	The input for object-oriented design is provided by the output of 0Tobject-oriented analysis0T. Realize that an output artifact does not need to be completely developed to serve as input of object-oriented design; analysis and design may occur in para...
	Object-oriented concepts
	Designing concepts
	Output (deliverables) of object-oriented design
	Some design principles and strategies
	0TUDependency injectionU0T: The basic idea is that if an object depends upon having an instance of some other object then the needed object is "injected" into the dependent object; for example, being passed a database connection as an argument to the ...

